PHYSICAL REVIEW E 73, 021507 (2006)

Dynamic fluctuations of dipolar semiflexible filaments
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On the basis of the model of a flexible magnetic filament, the characteristics of their thermal fluctuations are
considered. The crossover of the time dependence of the mean quadratic displacement from #¥* to ¢!/2 at the
magnetic field increase is found. Two characteristic mechanisms of the magnetization relaxation time
distribution—straightening of the thermal undulations and excitation of the bending modes of the free ends
under the action of an ac magnetic field—are described. In both cases, the characteristic scaling law w™* of
the magnetic susceptibility in a high-frequency range is found.
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I. INTRODUCTION

The dynamics of different semiflexible filaments is re-
sponsible for viscoelastic properties of their networks [1].
Scaling laws for the dependence of their dynamic suscepti-
bility on the frequency of external perturbation and charac-
teristics of thermal fluctuations of the filaments are known
[2,3]. The model of a dipolar semiflexible filament proposed
recently [4,5] shows that the characteristic exponents for the
dynamic susceptibility depend on the magnetic field strength
[6,7]. Here this dependence is studied in detail.

The scaling laws of the dynamic susceptibility are impor-
tant, for example for the understanding of the properties of
the magnetic colloids containing chains of the single domain
ferromagnetic nanoparticles [8,9]. The persistence length of
these chains can exceed the diameter of the particles more
than 10 times [5]. The samples containing chains of the mag-
netic particles show rather unusual dispersion of the mag-
netic susceptibility [8]. The chains of superparamagnetic par-
ticles also play an important role in the behavior of the
magnetorheological suspensions [10]. It was shown recently
[11] that in the range of the parameters where magnetic in-
teraction between the particles is attractive, the behavior of
the chains of free magnetic particles can be described by the
model of a flexible magnetic filament [4,5]. Thus the inves-
tigation of the dynamic properties of the dipolar semiflexible
magnetic filaments is important for this class of materials
too. Last but not least, the magnetotactic bacteria should be
mentioned [12]. An investigation of dynamic susceptibility
of these micro-organisms can deliver important information
on the organization of the magnetosomes of the bacteria [ 13].
The rich and unusual behavior of these bacteria under the
action of the rotating field was investigated recently [14].

Here in the Sec. 11, the characteristics of the thermal fluc-
tuations of the chains of dipolar particles are studied. It is
shown that in dependence on the observation time, the cross-
over of the mean quadratic displacement of the chain from

*Email address: aceb@tesla.sal.lv

1539-3755/2006/73(2)/021507(7)/$23.00

021507-1

PACS number(s): 83.80.Gv, 87.16.Ka, 87.15.He

the £*/* law characteristic to the semiflexible polymers [15] to
the 7'/? characteristic to the flexible magnetic filaments takes
place. Since the magnetic filaments are fluctuating, their
shape deviates from the straight rod. The magnetic field com-
ponent along the filament suppresses these fluctuations. Tak-
ing them as small in Sec. III, the time dependence of the long
filament magnetization due to the thermal fluctuation suppre-
sion by the applied ac magnetic field is considered. In this
case, the contribution of the ends of the filament is not im-
portant and the frequency dependence of the susceptibility
(dispersion) is due to the described effect of the straightening
of thermal fluctuations. The dispersion of the magnetic sus-
ceptibility of the sample of randomly orientated chains of
magnetic particles with a finite length in dependence on the
frequency of a small ac magnetic field is considered in Sec.
IV. The characteristic scaling laws of the dynamic suscepti-
bility are obtained and compared with the available experi-
mental data [8].

II. THERMAL FLUCTUATIONS OF DIPOLAR
SEMIFLEXIBLE MAGNETIC FILAMENTS

Let us consider the magnetic filaments with magnetization
M per unit of its length. The shape of the filament is charac-
terized by its tangent orientation angle 1 with respect to the
x axis, which is in the direction of the applied field H (see
Fig. 1). In the case of the small deformations of the filament,
the effects of its tension are negligible. In this case, the equa-
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FIG. 1. A picture of a magnetic filament
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tion for a small perturbation of the tangent angle 9 of the
filament, oriented at angle 3 with respect to the applied field,
from the value B is [4,5] (hereafter, [ is the contour length of
the filament, and the tilde is omitted)

L0 == Iy CO + 9y(F,,). (1)

Here {=4mn/[In(L/a)+c] is the hydrodynamic friction co-
efficient per unit length of the filament (L is the length of the
filament, a is the radius of its circular cross section, and c is
constant with the order of magnitude 1) and C is the curva-
ture elasticity constant. The normal force F, due to the action
of the torque on the filament from the applied field T,
=—MH sin(B+9) up to the first-order terms in tangent angle
perturbation is (H;=H cos )

Fnz—TOEMHSinB'FMH”’ﬁ. (2)

As a result, the equation for the small perturbation of the
tangent angle is as follows:

0,L0 == 9y CY+ MH 0. (3)

In the case of the long chain, we can represent ¥ by its
Fourier series (k=+2mn/L,n=0,1,2,...)

1
¥L,1) = ZE 9(t)explikl).
For the Fourier amplitudes, the following equation is valid:
do
gd—lk = — Ck*9 — MH K29, + 7, (4)

where the term f,f representing the effect of thermal noise is
accounted. The statistical properties of thermal noise are de-
termined by the fluctuation-dissipation theorem [16]

AN = 20k TLK S = 1) S

The Fourier amplitudes of the displacement of the filament y
from its straight configuration are found from the relation
d;y=1. The solution of the Cauchy problem with initial con-
dition 9;(0)=0 is

1( ,
9, = Z“ J o LK+ MH ) i1 mf}f’(r’) dr',
0

which gives (y, is the Fourier amplitude of the displacement)

{ ( 2(Ck4+MH|k2)t>]
l-exp|l—-—————— | |.

( - kgTL
Yiy-k) = Kt ¢

+ MH,k*

As a result, applying =, — (L/27) [ dk, the mean quadratic
displacement of the filament can be expressed as follows:
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kgT [© 1
X(1,0) = ZLJ dk——F————-
<y ( )> 27T 0 (Ck4+MHHk2)

[ ( 2(Ck4+MHk2)t)]
X| 1 —exp _f

kpTr3 1 Jw dz[1 —exp(-2z)]
0 2VAZ+z\VAZ+z-A

(5)

It depends on parameter A=[,/ llzq\s"kBTt/ 2{l,, where 1,
=C/kgT is the persistence length of the magnetic filament,
and /5 is a magnetic healing length defined as I;=\VC/MH,.
In the case when [/ is large or A small, the scaling law of the
semiflexible polymers [15] (y?) ~ *’* is obtained. The scaling
of the mean quadratic displacement as +** for the chain of
superparamagnetic particles at moderate values of the mag-
netodipolar interaction parameter is illustrated in [17]. In the
case when A is large, the scaling law "2 follows.

For the analysis of the thermal fluctuations of the fila-
ments in different situations, the formalism of the Green
functions is useful. This allows one, for example, using the
higher transcendental functions to obtain the expressions for
different quantities in concise forms, which are convenient
for the derivation of the asymptotic relations and scaling
laws. Using the Green function G, the solution of the Cauchy
problem with y(/,0)=0 of the equation for the displacement
of the filament, where the forces f of random thermal noise
are accounted,

TR o

3,8y == Iy Cy + MH 9y + f(1,1), (6)

reads
y(l,t):%Jf G -U,t=t")f(l',t")dl'dt, (7)
0 J—x

G can be expressed by the Fourier integral

©

G(x,t) = %T exp[— (Ck* + MH k*)t/{lexp(ikx)dk 6(1),

—o0

where 6 is the Heaviside function. Accounting for the corre-
lation function of the random thermal noise,

e f(x",1')) = 2LkpTo(x —x") St = 1'),

the mean quadratic displacement can be expressed as fol-
lows:

2kyT
4

OA(Lo)y= f f G*(I-1",t—ndrdl'. (8)
0 —o0

Using the identity

f x*lexp(- px* — gx)dx
0

= D_(g\2p)T (@)exp(q?/8p) (2p)~",
the integral [* G*(I-1',1)dl’ in Eq. (8) can be expressed
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through the function of the parabolic cylinder D, (z) as fol-

lows:
Jw GX1-1',p)dl' = 1 (MH A= )
’ 3w 2 "N g

—o0

f 1/4
Xexp[(MH||)2t/4C§](a) .9

Using asymptotics of the parabolic cylinder function D,(z) at
=,
D_ip(2) ~ 2 Pexp(=274),
for large MH\t/C{ we have
% 1 12
f GX1-1",ndl' ~ —_< £ )
o0 2\'27T [MHH

and as a result

2 ¢ 1/2
L) ~ kBT\f ( gMH> .

This result, taking into account

f [-exp(-], 1
20 3/2 - [

\‘7T

coincides with that given by the relation (5) for the large
values of the parameter A. Asymptotics of the right side of
the relation (9) for the small field gives

* r(1/4 14
f GX1-1'.1)dl' ~ (—)(i>
o 47 \2Ct

and
234
OH(1L1)) ~ o §3,4C1,4F(1/4)t3’4
which coincides with that given by the relation (5) since
“ 4I°(1/4
f [1—exp(-2)]z"dz = (T)
0

The expression of the mean quadratic displacements of
the magnetic filaments through the Green function allows
one to establish the scaling laws for different situations of the
filament deformation. Introducing Gy(l,7)=[(G(l,7)dT, we
have

oo [ 1
f f G*(,t— Ddldr= EGO(O,ZI),
—0 J 0

and the displacement of the point of the application of the
constant unit point force &(x) at t=0 is

G(0,1)
—g .

The scaling laws for the displacement of the free and
clamped end of the filament under the applied constant force
at its end and the mean square displacement obey the same

y(0,1) =
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FIG. 2. The crossover of the time dependence of the mean qua-
dratic displacement. Dashed lines correspond to the scalings #¥# and
#2 at small and large times, respectively.

scaling laws. Indeed, since the solution of the mixed problem
for the semi-infinite magnetic filament [ € [-,0] at the unit
force applied to its right end by symmetry arguments is
2Gy(l,1)/¢, then the scaling laws for the mean square dis-
placement and the displacement of the free and clamped end
under the action of the constant force are the same [15]. In
[6], by the numerical simulation of the dynamics of the mag-
netic filament under the action of constant force applied at its
free end, it is shown that the crossover from ** to "2 at the
increase of the magnetoelastic number Cm=MHL?/C takes
place in this case also.

The proportionality of the square root of the mean qua-
dratic displacement {y?) to #'* was found in [18] for the
chains of superparamagnetic particles and is valid for several
decades of the observation time. The crossover from ** to
t"2 is illustrated by Fig. 2, where

/ Amf dz[1 —exp(-2)]
0 ZVAZ+zVVAZ+z-A

in dependence on dimensionless time ¢/ 7, is shown in loga-
rithmic coordinates [7,=2¢l},/ kpTL,].

For the chain of single domain ferromagnetic particles,
the parameter A can be expressed in terms of the parameters
characterizing their properties. Since the persistence length
in this case can be found as [,=\d/2, where d is a diameter
of a particle [5], but M=m/d, where m_is the magnetic mo-
ment of the particle, then A=¢/ 24\ \Dyt/d?, where \
=m?/dkgT is the parameter of the magnetodipolar interac-
tion [19], é&=mH/kgT is the Langevin parameter of the par-
ticles, and Dy=kgT/{d is the characteristic value of their
translation diffusion coefficient.

Scaling Dt/d> for the representation of the experimental
data on the fluctuations of the chains of superparamagnetic
particles at different values of the magnetodipolar interaction
parameter is used in [20]. Nevertheless, the presented experi-
mental data do not allow one to make definite conclusions
about the crossover.

III. DYNAMIC MAGNETIC SUSCEPTIBILITY:
CONTRIBUTION OF STRAIGHTENING OF THERMAL
FLUCTUATIONS

Equation (4) allows one to calculate the contribution of
the straightening of the thermal fluctuations of the semiflex-
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ible magnetic filaments to its dynamic magnetic susceptibil-
ity. In the case of the ac magnetic field, it reads

s,

§_=—Ck ﬁk MHHkZCOS wtﬁk"‘f[?-

The transition to the stationary state is described by

t
of JI !Il
Oy = f Tl Wdr ¢ Zf,f(t')dt’,

where f(t)=(Ck*+MH k>cos wt)/{.
The component of the magnetic moment of the filament in
the direction of the applied field is

=chos Vdl. (10)

In the case when the deviations from the straight shape of the
filament oriented at the angle B with the respect to the field

are small, we can expand the relation (10) with respect to 5]

(9=pB+7, the tilde is omitted). Retaining only the first non-
vanishing term, the relation (10) gives

M cos BY?

5 )dl. (11)

:J (Mcos,B—Msin,Bf}—

Since the suspension of the filaments has no spontaneous
magnetization and the mean value of the tangent angle fluc-
tuation 1 is zero, only the last term in parentheses on the
right side of the relation (11) contributes to the magnetization
of the filament in an ac field.

Thus dynamic magnetic susceptibility is determined as

—ifchos,Bsin,Bf(192(/3)>dld,8/H. (12)
0

Since (S 9*(B)dl)=(1/L)=,{%9_,) and up to the first-order
terms in the amplitude of the external field

1 2kpTk* [ 2Ck*
—<19k19_k> = B f eXp(- 'T)
L ¢ Jo 4
2MH k2
X (1 - ZMH cos Bk sin wt(1 — cos w7)
w
2MH k>
- %SB cOos wt sin wr)dT, (13)
w

then for the magnetic susceptibility from Egs. (12) and (13)
we have (7,=¢/2Ck*)

wTydk
K1+ (w7)?]

1 (” dk
+cos(wt) f k[l+—(w7'0)]

lekTL (t) fm
X= ek sin(w:
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Introducing as the characteristic relaxation time 7,
:§l;/ 2kpT—the Brownian relaxation time of the rigid rod
with the length equal to the persistence length for the real
and imaginary parts of the complex susceptibility x=yx’

—ixy"—we have

1 M*BkyTL 1 k*dk
X'=7 > A | B2 (14)
3 C 2m)y K+ (w1
1M LkTL 1 (7 wr,dk 15)
"3 @ o o K+ (wr)*

The prefactor in relations (14) and (15) represents the
Langevin susceptibility (1/3)[(M lp)2/ kgT] of L/, indepen-
dent magnetic elements. Relations (14) and (15) show that
both real and imaginary parts of complex susceptibility obey
the scaling law (w7,)* in dependence on the frequency.

We can obtain an equivalent expression by the formalism
of the Green functions. According to Eq. (12), the transient
filament magnetization for arbitrary value of the magnetic
field at 9(1,0)=0 can be expressed through the function of a
parabolic cylinder as follows:

1 (7 ) kgTL 1
_ 4_1 . M cos Bsin Bdﬂ—2]/2§]/4c3/4;

t
d
xJ y%D-sxz[q(t,y)/\E]F(3/2)6Xp[qz(t,y)/8]’
0

where

V2MH cos B sin(wr)[ 1 — cos(wy)]
\J'R’w (
. Cos(wt)s_in(wy))
Yy

If 7/ 7-,,>1/\"TT[, (7= §112,/MH is the characteristic magnetic
relaxation of the rod with the length equal to the persistence
length), then for the average magnetization in the transitory
stage we have

1T(5/4) kyTLM*H 1 | . @' (1 -cos z)
=3 oA (w§)3/4C5/4§T sin(wt) |~ dz

q(t,y) =
\y

m

+c0s(wt)f 51;1/4z ) (16)

At wr>1, for the real and imaginary parts of the complex
susceptibility from Eq. (16) we obtain

_1T(5/4) kgTLM* 1 f “sinz

T3 2 ()M on Z5/4 z
and
. 1T(5/4) kgTLM?> 1 [*(1-cosz)
X'= 3 oS/ (w§)3/4C5/4;T dz
Since
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“ dx  T(5/4) [F (1 =cosz)
8~ smdz
o l+x 4 Jy Z

© x'dx  T(5/4) (T sinz
f 8~ f s 4z
o 1+x 4 0 Z
these expressions of the real and imaginary parts of the com-
plex susceptibility are equivalent to that given by the rela-
tions (14) and (15).

The results obtained in Secs. II and III correspond to the
case of enough small times or large frequencies when the
characteristic deformation penetration length remains less
than the length of filament. At large times the mean quadratic
displacement of the filament saturates to the constant value
determined by the equipartition theorem. An illustration that
in the case of filaments with finite length the dynamic mag-
netic susceptibility obeys at the high frequencies the scaling

law w™* is given in the next part of the work.

and

IV. THE DYNAMIC MAGNETIC SUSCEPTIBILITY
OF THE FILAMENT WITH A FINITE LENGTH

For the filament with finite length, the contribution to its
magnetization is coming also from the bending of its free
ends. In the case when the thermal fluctuations are absent up
to the first-order terms in the applied field, the displacement
of the filament, making angle B with the direction of the ac
magnetic field, as it follows from Eq. (6), obeys the equation

Ly == dyCy. (17)

In this case, the magnetic field enters only through the
boundary conditions, which applied at the ends of the fila-
ment /=0 and /=L correspond to the absence of momentum
stress

Iy =0 (18)
and vanishing of the total normal force
—&mCy+MHsinﬁ=O. (19)

We see that the problem is equivalent to the problem of the
bending of the Kirchhoff rod under the action of the normal
force applied at its ends, which is given up to the linear in
the field terms by MH sin 3.

Looking for the solution of Eq. (17) at boundary condi-
tions (18) and (19) in the form y=je™™ (the tilde is omitted),
we obtain

INy = dyCy.
Scaling the arclength / with respect to L, but A with respect

to C/{L* (N=(L*\/C, the tilde is omitted), the following
eigenvalue problem is obtained for the case of the homoge-
neous boundary conditions

Ay =y,

o, =0,

PHYSICAL REVIEW E 73, 021507 (2006)

Aylos =0.

The eigenfunctions are (p=\'"%)

¢ =[cosh(p,l) + cos pil][sinh p, — sin p;]
— [cosh(py) — cos pilsinh p;l + sin p;l],

where p; are found from the equation
cosh(p;)cos py=1.

The eigenvalue A=0 is degenerate and corresponds to the
two orthogonal eigenfunctions y,=1 and y;=(/—1/2). The
particular solution orthogonal to the eigenfunctions with A\
=0 of the problem at the nonhomogeneous boundary condi-
tions in the field H(z) is [h(r)=M sin(B)H(1)L*/ C]

1
y= h(t)m(zms — 1054+ 700 =91+ 1) = h(0)f(I).

Solution of the Cauchy problem for Eq. (17) at boundary
conditions (18) and (19) is as follows:

A ! ,
y=2 @ f e MR )t + yo(1)(1-172),
k ay o

where y, obeys the differential equation

d
%0=— 12h(7)

and describes the rotation of the magnetic filament as the
rigid rod, but f(l)=Ekfkqok(l)/az;a,%=f(l)qpidl. These relations
allow one to calculate the complex magnetic susceptibility
under the action of an ac field H(¢)=Hyexp(iwt). Magnetic
susceptibility due to rotation of the filament as a rigid rod
accounting for its rotational Brownian motion is

(ML)?* 1
3kpT 1 +itp0’
where Tp=a/2kgT and the rotational drag coefficient « is

found according to the relation a={L3/12. According to the
relation (11), the magnetic moment of the filament is

m=—M sin Bly(1,1) = y(0,)]. (20)

Relation (20) after averaging over the random orientations of
the filaments for the complex magnetic susceptibility gives

(7=

ML o filei(1) = ¢,(0)
3C 2,:‘ '

al(l+iwm)

We see that due to the heterogeneous deformation of the
filament, there is the distribution of the relaxation times 7,
determined by the eigenvalues of the eigenmodes \,. The
second and fourth normalized odd eigenmodes ¢, 4 in depen-
dence on the contour length of the filament are shown in Fig.
3. Contribution of the other odd modes is small. Even modes
do not contribute to the filament magnetization in this case at
all. As we see from Fig. 3, the most significant contribution
to the magnetization comes from the second odd mode and
corresponds to the periodic turning of the free ends of the
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FIG. 3. The first two odd eigenmodes of the filament
deformation.

filament in the direction of an ac magnetic field.

A more convenient form for the investigation of the scal-
ing laws arising due to this distribution is the closed form of
the solution for the displacement of the filament at the exci-
tation of the deformation modes under the action of an ac
field. For the Fourier component Ay(w) of the difference
between the displacements of the ends of the filament
y(1,0)=y(0,1), gives [k=(wlL*/ C)"*exp(=im/8)]

MHL?sin B2[(cosh k — 1)sin k + (1 — cos k)sinh k]

A =
y(w) C k(1 — cosh k cos k)

(21)

The asymptotics of the relation (21) for the magnetic suscep-
tibility after averaging over random orientations of the fila-
ment gives

M2L3 K_(
24

3/4
% ) exp(i57/8).

X=- w§L4

We see that the scaling law w™>* for the real and imaginary

parts of the complex magnetic susceptibility is valid at large
frequencies of the applied field.

The relations (20) and (21) show that the magnetic sus-
ceptibility of the single filament is proportional to sin’83. This
and the positive sign of the real part of the complex magnetic
susceptibility show that the flexible magnetic filament in the
magnetic field of the high frequency should orientate in the
direction perpendicular to the field. Study of this interesting
effect is planned for future publications.

Distribution of the magnetic relaxation times of the mag-
netic colloids is usually analyzed by Cole-Cole plots. In the
case when the magnetic susceptibility has the form [21]

X0~ X

T tom) (22)

X=Xt
the Cole-Cole plot is the arc of a circle that cross-sections
with the real axis determined by the static and high-
frequency susceptibilities x, and x.., respectively. Exponent
a characterizes the distribution of the relaxation times.
It is determined from the plot of ratio u/v
=X = x0)*+ X"/ (X' = x)*+ X%, which, when the relation
(22) is true, is equal to (w7,)'~%, in dependence on the fre-
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l0g,(u/v)

L L 1 1

3 35 4 45 5 55 6 65 7

log,,(0t,)

FIG. 4. Transition to the scaling law for the magnetic suscepti-
bility. Dashed line corresponds to w™>* dependence of the magnetic
susceptibility.

quency of the ac field [21]. According to our model, ¥,
=M>L3/630C, but x..=0. The plot of u/v in Fig. 4 shows
that crossover to scaling law y~ (w7,)™** takes place at
07y,=10*. Such values are reasonable for magnetic colloids
containing chainlike aggregates of ferromagnetic particles,
such as those investigated in [8]. A simple estimate of
wlL*/C using the value of the curvature elasticity constant
m?/2d? [5], where m is the magnetic moment of the particle
but d its diameter, shows that wr,=10* for the chain con-
taining 30 Fe particles is reached at the frequency of the ac
field 6.1 kHz ({ is estimated as 477, where for 7 the viscos-
ity of water is taken, but m=md*M /6, where M=1700 G is
the saturation magnetization of Fe). This estimate shows that
the experimental observation of the scaling law w™* is re-
alistic. Indeed, the experimental data for Fe colloid with the
particle radius 8.2 nm [8], for which the magnetodipolar in-
teraction parameter \=m?/d’kyT is huge—approximately
90—and thus contains long chains of the ferromagnetic par-
ticles, show behavior close to that predicted by our model.
The experimental data of [8] together with the expected scal-
ing law for the magnetic colloid containing chainlike aggre-
gates are shown in Fig. 5. We observe the transition to the
scaling behavior at the frequency of the ac field of about
10 kHz, which is very close to our estimate. It should be

-1 —

T
*eer e,

1.4} . |

16t AN

log,o(Imy)

18t 1

log, v

FIG. 5. Experimental data [8] for the frequency dependence of
the imaginary part of the complex magnetic susceptibility. By
dashed line the power law x” ~ w™>* is shown.
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noted that w7, due to the scalings considered does not de-
pend on the diameter of particles and scales with the number
of particles in the chain N as N*. More experimental data for
the magnetic susceptibility in the high-frequency range, pos-
sibly by using the viscous carrier liquids, are highly desir-
able.

V. CONCLUSIONS

The characteristic scaling law of the time dependence of
the mean quadratic displacement of the magnetic filaments
under the action of enough strong magnetic field shows the

PHYSICAL REVIEW E 73, 021507 (2006)

crossover from 7/* characteristic of the semiflexible fila-

ments to "> characteristic of the magnetic filaments. The
general formalism of the Green functions allows one to show
that this crossover takes place at different regimes of the
deformation of the magnetic filaments. It is shown that the
deformation modes of the magnetic filaments lead to the dis-
tribution of the magnetization relaxation times. It leads in the
high-frequency case to the scaling law of the magnetic sus-
ceptibility w™**. This scaling law is valid both in the case of
the straightening of the thermal fluctuations of the filaments
in the applied field and bending of their free ends due to the
torques of the applied field.
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